Diffusion Tensor Imaging: on the assessment of data quality - a preliminary bootstrap analysis
نویسندگان
چکیده
In the field of nuclear magnetic resonance imaging, diffusion tensor imaging (DTI) has proven an important method for the characterisation of ultrastructural tissue properties. Yet various technical and biological sources of signal uncertainty may prolong into variables derived from diffusion weighted images and thus compromise data validity and reliability. To gain an objective quality rating of real raw data we aimed at implementing the previously described bootstrap methodology (Efron, 1979) and investigating its sensitivity to a selection of extraneous influencing factors. We applied the bootstrap method on real DTI data volumes of six volunteers which were varied by different acquisition conditions, smoothing and artificial noising. In addition a clinical sample group of 46 Multiple Sclerosis patients and 24 healthy controls was investigated. The response variables (RV) extracted from the histogram of the confidence intervals of fractional anisotropy were mean width, peak position and height. The addition of noising showed a significant effect when exceeding about 130% of the original background noise. The application of an edge-preserving smoothing algorithm resulted in an inverse
منابع مشابه
Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation
Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...
متن کاملOn the assessment of DTI - data quality using bootstrap analysis
Diffusion tensor imaging (DTI) represents an established method to characterize and quantify ultrastructural brain tissue properties. DTI-derived variables are however affected by various sources of signal uncertainty. This study aimed to establish an objective quality measure for DTI based on the nonparametric bootstrap (BS) methodology. The confidence intervals of white matter FA and C linear...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملDiffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index
Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007